PLUTO

 
 
 

 

 

 

 

PlutoLong considered to be the smallest, coldest, and most distant planet from the Sun, Pluto may also be the largest of a group of objects that orbit in a disk-like zone of comets beyond the orbit of Neptune.

Discovered by American astronomer Clyde Tombaugh in 1930, Pluto takes 248 years to orbit the Sun. Pluto’s most recent close approach to the Sun was in 1989. Between 1979 and 1999, Pluto was actually closer to the Sun than Neptune, providing rare opportunities to study this small, cold, distant world and its companion moon, Charon.

Pluto and Charon.Most of what we know about Pluto we have learned since the late 1970s from Earth-based observations, the Infrared Astronomical Satellite (IRAS), and the Hubble Space Telescope. Many of the key questions about Pluto, Charon, and the outer fringes of our solar system await close-up observations by a robotic space flight mission.

Pluto and Charon orbit the Sun in a region where there may be a population of hundreds or thousands of similar bodies that were formed early in solar system history. The gravitational influence of the giant planets may have ejected these bodies to much larger distances from the solar system. The recent discovery of several bodies about the size of Charon in the region beyond Pluto has bolstered this theory. These objects are currently referred to interchangeably as trans-Neptunian objects, Edgeworth-Kuiper Disk objects, Kuiper Belt objects, or ice dwarves.

Pluto and its satellite CharonPluto is about two-thirds the diameter of Earth’s Moon and may have a rocky core surrounded by a mantle of water ice. Due to its lower den-sity, its mass is about one-sixth that of the Moon. Pluto appears to have a bright layer of frozen methane, nitrogen, and carbon monoxide on its surface. While it is close to the Sun, these ices thaw, rise, and tem-porarily form a thin atmosphere, with a pressure one one-millionth that of Earth’s atmosphere. Pluto’s low gravity (about 6 percent of Earth’s) causes the atmosphere to be much more extended in altitude than our planet’s. Because Pluto’s orbit is so elliptical, Pluto grows much colder during the part of each orbit when it is traveling away from the Sun. During this time, the bulk of the planet’s atmosphere freezes.

On August 24, 2006, the International Astronomical Union (IAU) formally downgraded Pluto from an official planet to a dwarf planet. According to the new rules a planet meets three criteria: it must orbit the Sun, it must be big enough for gravity to squash it into a roundPluto's orientation ball, and it must have cleared other things out of the way in its orbital neighborhood. The latter measure knocks out Pluto and 2003UB313 (Eris), which orbit among the icy wrecks of the Kuiper Belt, and Ceres, which is in the asteroid belt.

(1) A "planet" is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.

(2) A "dwarf planet" is a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, (c) has not cleared the neighborhood around its orbit, and (d) is not a satellite.

(3) All other objects except satellites orbiting the Sun shall be referred to collectively as "Small Solar-System Bodies".

The never-before-seen surface of the distant planet Pluto is resolved in these NASA Hubble Space Telescope pictures, taken with the European Space Agency's (ESA) Faint Object Camera (FOC) aboard Hubble.

Hubble imaged nearly the entire surface of Pluto, as it rotated through its 6.4-day period, in late June and early July 1994. These images, which were made in blue light, show that Pluto is an unusually complex object, with more large-scale contrast than any planet, except Earth.

PlutoPluto itself probably shows even more contrast and perhaps sharper boundaries between light and dark areas than is shown here, but Hubble's resolution (just like early telescopic views of Mars) tends to blur edges and blend together small features sitting inside larger ones.

The two smaller inset pictures at the top are actual images from Hubble. North is up. Each square pixel (picture element) is more than 100 miles across. At this resolution, Hubble discerns roughly 12 major "regions" where the surface is either bright or dark.

The larger images (bottom) are from a global map constructed through computer image processing performed on the Hubble data. The tile pattern is an artifact of the image enhancement technique.

Opposite hemispheres of Pluto are seen in these two views. Some of the variations across Pluto's surface may be caused by topographic features such as basins, or fresh impact craters. However, most of the surface features unveiled by Hubble, including the prominent northern polar cap, are likely produced by the complex distribution of frosts that migrate across Pluto's surface with its orbital and seasonal cycles and chemical byproducts deposited out of Pluto's nitrogen-methane atmosphere.

 

Pluto's Sattellites (Moons)

 

In 1978, American astronomers James Christy and Robert Harrington discovered thatPluto and Charon Pluto has a satellite (moon), which they named Charon. Charon is almost half the size of Pluto and shares the same orbit. Pluto and Charon are thus essentially a double planet. Charon’s surface is covered with dirty water ice and doesn’t reflect as much light as Pluto’s surface.

No spacecraft have ever visited Pluto. Because Pluto is so small and far away, it is difficult to observe from Earth. In the late 1980s, Pluto and Charon passed in front of each other repeatedly for several years. Observations of these rare events allowed astronomers to make crude maps of each body. From these maps it was learned that Pluto has polar caps, as well as large, dark spots nearer its equator.

The moons Nix and Hydra also orbit the same barycenter, but are not large enough to be spherical, and are simply considered to be satellites of Pluto (or, under the alternative viewpoint, of the Pluto-Charon system)

Hydra was discovered along with Nix in June, 2005 by the Hubble Space Telescope's Pluto Companion Search Team.

Nix follows a circular orbit in the same plane as Charon. Its orbital period of 24.9 days is close to a 1:4 orbital resonance with Charon, but the timing discrepancy is 2.7%, which suggests that there is no active resonance.

Hydra orbits the barycenter of the system in the same plane as Charon and Nix, at a distance of about 65,000 km. Unlike other satellites of Pluto, its orbit is only nearly circular; its eccentricity of 0.0052 is small, but significantly non-zero. Its orbital period of 38.2 days is close to a 1:6 orbital resonance with Charon, with the timing discrepancy being 0.3%. Whether this is a true resonance awaits more detailed determinations of its orbit, in particular its rate of precession.

 

NASA's Hubble Discovers Another Moon Around Pluto

 
07.20.11

Astronomers using the Hubble Space Telescope discovered a fourth moon orbiting the icy dwarf planet Pluto. The tiny, new satellite – temporarily designated P4 -- was uncovered in a Hubble survey searching for rings around the dwarf planet.

Click HereThe new moon is the smallest discovered around Pluto. It has an estimated diameter of 8 to 21 miles (13 to 34 km). By comparison, Charon, Pluto's largest moon, is 648 miles (1,043 km) across, and the other moons, Nix and Hydra, are in the range of 20 to 70 miles in diameter (32 to 113 km).

The finding is a result of ongoing work to support NASA's New Horizons mission, scheduled to fly through the Pluto system in 2015. The mission is designed to provide new insights about worlds at the edge of our solar system. Hubble's mapping of Pluto's surface and discovery of its satellites have been invaluable to planning for New Horizons' close encounter.

The new moon is located between the orbits of Nix and Hydra, which Hubble discovered in 2005. Charon was discovered in 1978 at the U.S. Naval Observatory and first resolved using Hubble in 1990 as a separate body from Pluto.

The dwarf planet’s entire moon system is believed to have formed by a collision between Pluto and another planet-sized body early in the history of the solar system. The smashup flung material that coalesced into the family of satellites observed around Pluto.

Lunar rocks returned to Earth from the Apollo missions led to the theory that our moon was the result of a similar collision between Earth and a Mars-sized body 4.4 billion years ago. Scientists believe material blasted off Pluto's moons by micrometeoroid impacts may form rings around the dwarf planet, but the Hubble photographs have not detected any so far.

"This surprising observation is a powerful reminder of Hubble's ability as a general purpose astronomical observatory to make astounding, unintended discoveries," said Jon Morse, astrophysics division director at NASA Headquarters in Washington.

P4 was first seen in a photo taken with Hubble's Wide Field Camera 3 on June 28. It was confirmed in subsequent Hubble pictures taken on July 3 and July 18. The moon was not seen in earlier Hubble images because the exposure times were shorter. There is a chance it appeared as a very faint smudge in 2006 images, but was overlooked because it was obscured.

 

Hubble Discovers a Fifth Moon Orbiting Pluto

07.11.12

 

 

 

A team of astronomers using NASA’s Hubble Space Telescope is reporting the discovery of another moon orbiting the icy dwarf planet Pluto.

Click HereThe moon is estimated to be irregular in shape and 6 to 15 miles across. It is in a 58,000-mile-diameter circular orbit around Pluto that is assumed to be co-planar with the other satellites in the system.

“The moons form a series of neatly nested orbits, a bit like Russian dolls,” said team lead Mark Showalter of the SETI Institute in Mountain View, Calif.

The discovery increases the number of known moons orbiting Pluto to five.

The Pluto team is intrigued that such a small planet can have such a complex collection of satellites. The new discovery provides additional clues for unraveling how the Pluto system formed and evolved. The favored theory is that all the moons are relics of a collision between Pluto and another large Kuiper belt object billions of years ago.

The new detection will help scientists navigate NASA’s New Horizons spacecraft through the Pluto system in 2015, when it makes an historic and long-awaited high-speed flyby of the distant world.

The team is using Hubble’s powerful vision to scour the Pluto system to uncover potential hazards to the New Horizons spacecraft. Moving past the dwarf planet at a speed of 30,000 miles per hour, New Horizons could be destroyed in a collision with even a BB-shot-size piece of orbital debris.

“The discovery of so many small moons indirectly tells us that there must be lots of small particles lurking unseen in the Pluto system,” said Harold Weaver of the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

“The inventory of the Pluto system we're taking now with Hubble will help the New Horizons team design a safer trajectory for the spacecraft,” added Alan Stern of the Southwest Research Institute in Boulder, Colo., the mission’s principal investigator.

 

Image Credit: Alan Stern (Southwest Research Institute), Marc Buie (Lowell Observatory), NASA and ESA

 

NASA’s New Horizons Spacecraft Nears Historic July 14 Encounter with Pluto

 

April 14, 2015

Pluto April 2015NASA’s New Horizons spacecraft is three months from returning to humanity the first-ever close up images and scientific observations of distant Pluto and its system of large and small moons.

"Scientific literature is filled with papers on the characteristics of Pluto and its moons from ground based and Earth orbiting space observations, but we’ve never studied Pluto up close and personal,” said John Grunsfeld, astronaut, and associate administrator of the NASA Science Mission Directorate at the agency’s Headquarters in Washington.  “In an unprecedented flyby this July, our knowledge of what the Pluto systems is really like will expand exponentially and I have no doubt there will be exciting discoveries."

The fastest spacecraft ever launched, New Horizons has traveled a longer time and farther away – more than nine years and three billion miles – than any space mission in history to reach its primary target. Its flyby of Pluto and its system of at least five moons on July 14 will complete the initial reconnaissance of the classical solar system. This mission also opens the door to an entirely new “third” zone of mysterious small planets and planetary building blocks in the Kuiper Belt, a large area with numerous objects beyond Neptune’s orbit.

The flyby caps a five-decade-long era of reconnaissance that began with Venus and Mars in the early 1960s, and continued through first looks at Mercury, Jupiter and Saturn in the 1970s and Uranus and Neptune in the 1980s.

Reaching this third zone of our solar system – beyond the inner, rocky planets and outer gas giants – has been a space science priority for years. In the early 2000s the National Academy of Sciences ranked the exploration of the Kuiper Belt – and particularly Pluto and its largest moon, Charon – as its top priority planetary mission for the coming decade

Pluto, the largest known body in the Kuiper Belt, offers a nitrogen atmosphere, complex seasons, distinct surface markings, an ice-rock interior that may harbor an ocean, and at least five moons. Among these moons, the largest – Charon - may itself sport an atmosphere or an interior ocean, and possibly even evidence of recent surface activity.

“There’s no doubt, Charon is a rising star in terms of scientific interest, and we can’t wait to reveal it in detail in July,” said Leslie Young, deputy project scientist at SwRI.

Pluto’s smaller moons also are likely to present scientific opportunities. When New Horizons was started in 2001, it was a mission to just Pluto and Charon, before the four smaller moons were discovered.

The spacecraft’s work doesn’t end with the July flyby. Because it gets one shot at its target, New Horizons is designed to gather as much data as it can, as quickly as it can, taking about 100 times as much data on close approach as it can send home before flying away. And although the spacecraft will send select, high-priority datasets home in the days just before and after close approach, the mission will continue returning the data stored in onboard memory for a full 16 months.

 

NASA’s New Horizons Sees More Detail as It Draws Closer to Pluto

 

May 27, 2015

 

Pluto May 2015What a difference 20 million miles makes! Images of Pluto from NASA’s New Horizons spacecraft are growing in scale as the spacecraft approaches its mysterious target. The new image, taken May 12 using a powerful telescopic camera and downlinked last week, reveal more detail about Pluto’s complex and high contrast surface.

These images also continue to support the hypothesis that Pluto has a polar cap whose extent varies with longitude; we’ll be able to make a definitive determination of the polar bright region’s iciness when we get compositional spectroscopy of that region in July.

The images New Horizons returns will dramatically improve in coming weeks as the spacecraft speeds closer to its July 14 encounter with the Pluto system, covering about 750,000 miles per day.

“By late June the image resolution will be four times better than the images made May 8-12, and by the time of closest approach, we expect to obtain images with more than 5,000 times the current resolution,” said Hal Weaver, the mission’s project scientist at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

Following a January 2006 launch, New Horizons is currently about 2.95 billion miles from home; the spacecraft is healthy and all systems are operating normally.

 

New Horizons Captures Two of Pluto's Smaller Moons

 

July 21, 2015

Pluto's moon Nix (left), shown here in enhanced color as imaged by the New Horizons Ralph instrument, has a reddish spot that has attracted the interest of mission scientists.  The data were obtained on the morning of July 14, 2015, and received on the ground on July 18.  At the time the observations were taken New Horizons was about 102,000 miles (165,000 km) from Nix. The image shows features as small as approximately 2 miles (3 kilometers) across on Nix, which is estimated to be 26 miles (42 kilometers) long and 22 miles (36 kilometers) wide. Pluto’s small, irregularly shaped moon Hydra (right) is revealed in this black and white image taken from New Horizons’ LORRI instrument on July 14, 2015, from a distance of about 143,000 miles (231,000 kilometers). Features as small as 0.7 miles (1.2 kilometers) are visible on Hydra, which measures 34 miles (55 kilometers) in length.

Pluto's small, irregularly shaped moon Hydra (right) is revealed in this black and white image taken from New Horizons’ LORRI instrument on July 14, 2015, from a distance of about 143,000 miles (231,000 kilometers). Features as small as 0.7 miles (1.2 kilometers) are visible on Hydra, which measures 34 miles (55 kilometers) in length.

While Pluto’s largest moon Charon has grabbed most of the lunar spotlight so far, these two smaller and lesser-known satellites are now getting some attention.  Nix and Hydra – the second and third moons to be discovered – are approximately the same size, but their similarity ends there.

New Horizons’ first color image of Pluto’s moon Nix, in which colors have been enhanced, reveals an intriguing  region on the jelly bean-shaped satellite, which is estimated to be 26 miles (42 kilometers) long and 22 miles (36 kilometers) wide.

Although the overall surface color of Nix is neutral grey in the image, the newfound region has a distinct red tint.  Hints of a bull’s-eye pattern lead scientists to speculate that the reddish region is a crater. “Additional compositional data has already been taken of Nix, but is not yet downlinked. It will tell us why this region is redder than its surroundings,” said mission scientist Carly Howett, Southwest Research Institute, Boulder, Colorado. She added, "This observation is so tantalizing, I’m finding it hard to be patient for more Nix data to be downlinked."

Meanwhile, the sharpest image yet received from New Horizons of Pluto’s satellite Hydra shows that its irregular shape resembles the state of Michigan. The new image was made by the Long Range Reconnaissance Imager (LORRI) on July 14, 2015 from a distance of 143,000 miles (231,000 kilometers), and shows features as small as 0.7 miles (1.2 kilometers) across. There appear to be at least two large craters, one of which is mostly in shadow. The upper portion looks darker than the rest of Hydra, suggesting a possible difference in surface composition. From this image, mission scientists have estimated that Hydra is 34 miles (55 kilometers) long and 25 miles (40 kilometers) wide. Commented mission science collaborator Ted Stryk of Roane State Community College in Tennessee, “Before last week, Hydra was just a faint point of light, so it's a surreal experience to see it become an actual place, as we see its shape and spot recognizable features on its surface for the first time.

Images of Pluto’s most recently discovered moons, Styx and Kerberos, are expected to be transmitted to Earth no later than mid-October.

Nix and Hydra were both discovered in 2005 using Hubble Space Telescope data by a research team led by New Horizons project scientist Hal Weaver, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland. New Horizons’ findings on the surface characteristics and other properties of Nix and Hydra will help scientists understand the origins and subsequent history of Pluto and its moons.

Image Credit:NASA/JHUAPL/SWRI

 

 

Pluto and Charon in Natural Color

 

July 24, 2015

Pluto and Charon are shown in a composite of natural-color images from New Horizons. Images from the Long Range Reconnaissance Imager (LORRI) were combined with color data from the Ralph instrument to produce these views, which portray Pluto and Charon as an observer riding on the spacecraft would see them. The images were acquired on July 13 and 14, 2015.

Pluto and Charon are shown in enhanced color in this image, which is the highest-resolution color image of the pair yet returned to Earth by New Horizons.  It was taken with the spacecraft’s Ralph instrument about five hours before closest approach to Pluto, from a range of 150,000 miles (250,000 kilometers). The image highlights the contrasting appearance of the two worlds: Charon is mostly gray, -- with a dark reddish polar cap -- while Pluto shows a wide variety of subtle color variations, including yellowish patches on the north polar cap and subtly contrasting colors for the two halves of Pluto’s “heart”, now informally named Tombaugh Regio (Tombaugh Region), seen in the upper right quadrant of the image.

In order to fit Pluto and Charon in the same frame in their correct relative positions, the image has been rotated so the north poles of both Pluto and Charon are pointing toward the upper left.  The image was made with the blue, red, and near-infrared color filters of Ralph’s Multicolor Visible Imaging Camera, and shows colors that are similar, but not identical, to what would be seen with the human eye.

Image Credit: NASA/JUAPL/SwRI

 

 

Pluto's Incredible Diversity of Surface Reflectivities and Geological Landforms

Sept. 10, 2015

This 220-mile (350-kilometer) wide view of Pluto from NASA’s New Horizons spacecraft illustrates the incredible diversity of surface reflectivities and geological landforms on the dwarf planet. The image includes dark, ancient heavily cratered terrain; bright, smooth geologically young terrain; assembled masses of mountains; and an enigmatic field of dark, aligned ridges that resemble dunes; its origin is under debate. The smallest visible features are 0.5 miles (0.8 kilometers) in size. This image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers).

 

 

Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

 

 

 

The Tartarus Dorsa Mountains Rise Up Along Pluto

 

Sept. 24, 2015

In this extended color image of Pluto taken by NASA’s New Horizons spacecraft, rounded and bizarrely textured mountains, informally named the Tartarus Dorsa, rise up along Pluto’s day-night terminator and show intricate but puzzling patterns of blue-gray ridges and reddish material in between. This view, roughly 330 miles (530 kilometers) across, combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC) on July 14, 2015, and resolves details and colors on scales as small as 0.8 miles (1.3 kilometers).

 

 

 

Credit: NASA/JHUAPL/SWRI

 

 

Pluto’s Icy Plains in Highest-Resolution Views from New Horizons

 

Jan. 7, 2016

NASA’s New Horizons spacecraft continues to transmit the sharpest views of Pluto that it obtained (and recorded) during its July 14, 2015 flyby.

The newest image, returned on Dec. 24, extends New Horizons’ highest-resolution swath of Pluto to the center of the informally named Sputnik Planum, and nearly completes the set of highest-resolution images taken by New Horizons.

The pictures are part of a sequence taken near New Horizons’ closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel – revealing features smaller than half a city block on Pluto’s surface. The images illustrate the polygonal or cellular pattern of the plains, which are thought to result from the convective churning of a deep layer solid, but mobile, nitrogen ice.

The images shown here form a strip 50 miles (80 kilometers) wide and more than 400 miles (700 kilometers) long, trending from the northwestern shoreline of Sputnik Planum and out across its icy plains. They were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, from a range of approximately 10,000 miles (17,000 kilometers), about 15 minutes before New Horizons’ closest approach to Pluto.

The surface of Sputnik Planum appears darker toward the shore (at top), possibly implying a change in composition or surface texture. The occasional raised, darker blocks at the cell edges are probably dirty water “icebergs” that are floating in denser solid nitrogen.

The images are six times better than the resolution of the global Pluto map New Horizons obtained, and five times better than the best images of Pluto’s cousin Triton, Neptune’s large moon, obtained by Voyager 2 in 1989.

 

 

Credits:  NASA/JHUAPL/SwRI

 

 

Pluto ‘Paints’ its Largest Moon Red

 

Sept. 14, 2016

In June 2015, when the cameras on NASA’s approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto’s largest moon, Charon, mission scientists knew two things: they’d Click Herenever seen anything like it elsewhere in our solar system, and they couldn’t wait to get the story behind it.

Over the past year, after analyzing the images and other data that New Horizons has sent back from its historic July 2015 flight through the Pluto system, the scientists think they’ve solved the mystery. As they detail this week in the international scientific journal Nature, Charon’s polar coloring comes from Pluto itself – as methane gas that escapes from Pluto’s atmosphere and becomes “trapped” by the moon’s gravity and freezes to the cold, icy surface at Charon’s pole. This is followed by chemical processing by ultraviolet light from the sun that transforms the methane into heavier hydrocarbons and eventually into reddish organic materials called tholins.

“The methane molecules bounce around on Charon's surface until they either escape back into space or land on the cold pole, where they freeze solid, forming a thin coating of methane ice that lasts until sunlight comes back in the spring,” Grundy said. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from it remain on the surface.

<>The models also suggested that in Charon’s springtime the returning sunlight triggers conversion of the frozen methane back into gas. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from this evaporative process remain on the surface.

 Sunlight further irradiates those leftovers into reddish material – called tholins – that has slowly accumulated on Charon’s poles over millions of years. New Horizons’ observations of Charon’s other pole, currently in winter darkness – and seen by New Horizons only by light reflecting from Pluto, or “Pluto-shine” – confirmed that the same activity was occurring at both poles.

 

Credits:  NASA/JHUAPL/SwRI

 

 

 

 

Back to the Main Menu

 

 

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 

 



  The Future Astronauts of America Foundation



Promote Your Page Too


 

 

 

 

 

The Future Astronauts of America Foundation Title; 'We help launch the future' slogan; Character and Name Ikky;
and The
Future Astronauts of America Foundation Logo are intellectual property of The Future Astronauts of America Foundation